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Abstract

The innate immune response is primarily mediated by the Toll-like receptors functioning through the MyD88-dependent
and TRIF-dependent pathways. Despite being widely studied, it is not yet completely understood and systems-level
analyses have been lacking. In this study, we identified a high-probability network of genes activated during the innate
immune response using a novel approach to analyze time-course gene expression profiles of activated immune cells in
combination with a large gene regulatory and protein-protein interaction network. We classified the immune response into
three consecutive time-dependent stages and identified the most probable paths between genes showing a significant
change in expression at each stage. The resultant network contained several novel and known regulators of the innate
immune response, many of which did not show any observable change in expression at the sampled time points. The
response network shows the dominance of genes from specific functional classes during different stages of the immune
response. It also suggests a role for the protein phosphatase 2a catalytic subunit o in the regulation of the
immunoproteasome during the late phase of the response. In order to clarify the differences between the MyD88-
dependent and TRIF-dependent pathways in the innate immune response, time-course gene expression profiles from
MyD88-knockout and TRIF-knockout dendritic cells were analyzed. Their response networks suggest the dominance of the
MyD88-dependent pathway in the innate immune response, and an association of the circadian regulators and
immunoproteasomal degradation with the TRIF-dependent pathway. The response network presented here provides the
most probable associations between genes expressed in the early and the late phases of the innate immune response, while
taking into account the intermediate regulators. We propose that the method described here can also be used in the
identification of time-dependent gene sub-networks in other biological systems.
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Introduction

The innate immune system is the primary host response to
invading pathogens. The innate immune response is characterized
by germline-encoded pattern-recognition receptors (PRRs) that
detect and bind to specific microbial components, also known as
pathogen-associated molecular patterns (PAMPs). Toll-like recep-
tors (TLRs) are a family of PRRs that are conserved from worm to
mammals and expressed on different types of immune cells, such
as macrophages, dendritic cells (DCs) and B cells, as well as non-
immune cells, such as fibroblasts and epithelial cells. 10 and 13
TLRs have been identified in human and mouse, respectively,
each with distinct microbial ligands. The binding of these ligands
to their specific receptors triggers downstream signaling cascades
causing the expression of pro-inflammatory cytokines, ultimately
leading to systemic inflammation. TLRs primarily function
through two pathways — the MyD88-dependent pathway which
leads to the expression of proinflammatory cytokines, and the
TIR-domain—containing adaptor protein-inducing IFN-f (TRIF)-
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dependent pathway which produces the type I interferons (IFNs)
[1,2].

Though much is known about the pathways activated during
the innate immune response, recent perturbation studies have
identified previously unknown regulators and transcription factors,
highlighting the complexity of the innate immune system and the
incompleteness of our current knowledge [3-5]. While these
studies provide important information about the genes affected on
perturbation of a causal gene, they do not explain the cause of the
observed expression changes. Additionally, these studies are
inherently limited to genes which show changes in expression at
the time of observation thus providing an incomplete representa-
tion of the activated pathways. The complexity of the innate
immune system, the ease of monitoring transcriptional changes,
and the availability of large amounts of regulatory and interaction
information, all facilitate its analysis using computational methods.
An initial computational study mapped all the known interactions
associated with the immune response from literature [6]. This
study provided a high confidence signaling network and identified
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the “bow-tie” structure of the immune response. However, it was
limited in size and coverage. Li et al. used this signaling map to
identify 10 distinct input-output pathways [7]. The resultant
modules were further used by Richard et al. to identify a minimum
set of genes whose deletion affects the fidelity of the TLR signaling
pathways [8]. Though these methods used novel approaches to
analyze the TLR signaling pathways, they did not take the
temporal changes of the immune response into account. Using a
different approach, Seok et al. studied the regulatory networks of
10 transcription factors and their targets using the Network
Component Analysis approach [9]. While this study considered
the dynamic nature of the immune response through the use of
time-course gene expression profiles, it was limited to only 10
transcription factors. Thus, the computational analyses so far
performed to study the innate immune response have either been
limited by the size of the molecular network used, or by the lack of
time-course gene expression profiles. In this study, we perform a
comprehensive computational analysis of the dynamic aspects of
the innate immune response in the context of a large-scale
molecular network.

Several methods using condition-specific genetic, transcriptional
and epigenomic data in the context of large protein-protein
interaction (PPI) and protein-DNA interaction (PDI) networks
have been developed, and have led to the identification of novel
regulators and pathways in several cellular systems [10,11]. These
include Network Component Analysis (NCA) [12], DREM [13]
and its recent update SDREM [14], ResponseNet [15] and
SteinerNet [16,17]. Data from time-course gene expression
profiles is particularly informative in this context since it can
capture chronological events in the cellular system. However,
some of the methods listed above, like ResponseNet and
SteinerNet, are insensitive to the temporal aspect of gene
expression, while others like NCA and SDREM use the temporal
gene expression information only to identify transcription factors
activated at various time points but not to predict active networks.
Others have used time-course gene expression profiles either to
identify time-specific protein-modules in PPI networks [18-21], or
to infer transcription regulatory networks activated over time

[12,13,22]. Though all the methods described so far are relatively
successful in identifying network components and modules
activated at specific time points, no attempt has been made to
identify paths connecting genes expressed at different time points.
Such temporal paths can show potential connections between
genes expressed at different stages of a response thus providing
information about intermediate, transiently expressed regulators
that would otherwise have been overlooked.

In this work, we studied the innate immune response in
dendritic cells (DCs) stimulated by lipopolysaccharide (LPS). LPS
is a component of the outer membrane of Gram-negative bacteria
and specifically binds to the TLR4 receptor, triggering both the
downstream MyD88 and TRIF-dependent pathways. We used
time-course gene expression profiles collected at 8 time points after
LPS stimulation in the context of a high-confidence PPI, PDI and
post-translational modifications (PTM) network. We grouped the
gene expression profiles into three groups — the initial response
genes (greatest fold-change in expression between 0.5-1 hour after
stimulation), the intermediate regulators (greatest fold-change in
expression between 2-4 hours after stimulation) and the late
effectors (greatest fold-change in expression between 6-8 hours
after stimulation). We then attempted to identify the most
probable paths connecting the initial response genes to the late
effectors in the interaction network, while taking into account the
intermediate regulators. In order to do this, we used a network
flow optimization approach allowing the flow to follow a time-
dependent path within the molecular network. Using this method,
we were able to identify an optimal gene sub-network for activated
DCs. Based on this sub-network, we identified several known core
components of the innate immune response, novel down-stream
participants and pathways connecting these core components. We
were able to identify genes playing an important role in the innate
immune response but showing no observable change in expres-
sion. We also analyzed time-course gene expression profiles of
MyD88-knockout cells and TRIF-knockout cells, and compared
their gene sub-networks to that obtained for wild-type DCs in
order to identify the components that are independently activated
in each pathway. Finally, we identified the distinct functional
classes of genes expressed during different stages of the immune
response and how their patterns of expression change in MyD88
and TRIF-knockout DCs compared to those in wild-type DCs.

Results

Optimal sub-network identification

We used a minimum cost flow optimization approach to identify
important components of the innate immune response over time
on LPS stimulation. A network of PPI and regulatory interactions,
including transcription factor-target gene, phosphorylation, de-
phosphorylation and ubiquitination relationships, was prepared.
Network edges were scored based on interaction reliability as
obtained from the protein-protein interaction database, HitPredict
[23]. Time-course gene expression levels were obtained using



In order to identify potential paths through the molecular
network connecting the genes within the three groups, we
formulated the problem as a minimum cost flow optimization
problem incorporating the gene expression levels in three stages.
Figure 1 shows a schematic representation of the proposed
method. We set our source nodes as the initial response genes. The
target nodes of the network were the late effector genes. Edges of
the network were assigned costs that were inversely proportional to
their interaction reliability. Edges were also given a flow capacity
proportional to the observed change in expression of the adjacent
genes. A constraint was added to the flow optimization problem to
force the flow to go through at least one intermediate regulator.
We solved the optimization problem to identify the path of
minimum cost for the flow to pass through the network using
linear programming techniques (see Materials and methods for the
problem formulation). The method found the most probable paths
in the network between genes expressed in the initial response and
those expressed at a later time while taking into account the genes
expressed during the intermediate stage. Each edge of the optimal
sub-network was assigned a flow signifying its importance. This
resulted in a weighted gene sub-network where the edges were
scored according to their importance. Flows were calculated for
nodes, or genes, as the sum of the flows of their incoming edges.
Genes with high flows were considered important due to their
connection to high-flow edges. The reliability of the optimal
solution was confirmed and statistical significance was calculated
for each gene in the optimal sub-network by randomizing the
source and target nodes (see Materials and methods). The flow
assigned to a gene within the sub-network shared an inverse
relationship with its statistical significance, demonstrating that a
high flow was a good indicator of reliability (Figure S1). The genes
with the highest flows — Socs3, Nficb1, Jak2, Jun, Fos, CxclI10 and
Stat] are well-known components of the innate immune response.
Table 1 shows 20 genes with the highest flows in the optimal sub-
network for activated wild-type DCs (See Table S1 for the list of all
predicted genes and their statistical significance). As shown by the
results, the method not only predicted essential genes expressed
within each of the 3 groups, but also genes for which no significant
change in expression was detected but were connected to others
with significant changes in expression over time.

Optimal sub-network evaluation

In order to evaluate the reliability of the gene network resulting
from the paths identified by solving the flow optimization problem,
we compared the genes in the optimal sub-network with the
experimentally identified regulators of the innate immune
response from previous perturbation experiments [3,4]. Of the
125 regulators identified by Amit et al. [3], our sub-network
contained 62 (49.6%), all of which had a flow greater than 1
(Table S2). In a similar study by Chevrier et al. [4], our sub-
network contained 30 of the 43 known or novel regulators
identified (69.8%), and 56 of the 102 (54.9%) TLR target genes
affected by the perturbation of these regulators (Table S3). The
sub-network also contained the gene, Polo-like kinase 2 (Plk2),
which activates a distinct signaling cascade. Thus, our sub-network
contained a significant number of the regulators of the innate
immune response that were recently experimentally identified.

We further confirmed the quality of the predicted gene network
through Gene Ontology (GO) and KEGG pathway enrichment
analysis. The genes having flows greater than 1 in the sub-network,
were enriched for the Toll-like receptor signaling pathway
(p=5.10e-41), Jak-STAT signaling pathway (p = 4.88e-45), path-
ways in cancer (p=2.50e-41) and chemokine signaling pathway
(p=5.16e-40) among others (See Table S4 for full list). The
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association of the predicted genes with the innate immune
response is further confirmed by the GO Biological Process terms
enriched for these genes. Protein amino acid phosphorylation
(p = 7.80e-36), immune response (p = 1.35e-32) and regulation of
programmed cell death (p=1.72e-29) were some of the most
enriched terms (See Table S5 for full list). 49.7% of the genes
identified in the optimal sub-network did not show significant
change in their expression levels on LPS stimulation. In order to
confirm that these genes contribute to the enrichment of functional
terms associated with the innate immune response, we compared
the enrichment of the KEGG pathways and the GO terms in all
predicted genes with those that showed differential expression after
LPS stimulation (Table S6, S7). Including predicted genes lacking
differential expression significantly improved the enrichment of
the KEGG pathways and the GO terms associated with the innate
immune response over that observed for differentially expressed
genes only. This further confirmed the association of the genes
predicted in optimal sub-network with the innate immune
response.

Additional analysis of GO term enrichment of genes identified
in the sub-network at each time point showed the distinct processes
active during different stages of the immune response. Table 2
shows the most significant GO Molecular Function and Cellular
Component terms enriched in genes identified at each time point.
The most significant term enriched for genes expressed between
0.5-1 hour is “transcription regulator activity” (p =1.18e-09) for
20% of the genes indicating an upregulation of transcription
factors during the first hour of the immune response. On the other
hand, genes predicted at 2—4 hours are enriched for “nucleotide
binding” (p = 9.33e-04, 28.5% genes) and “protein kinase activity”
(p=1.27e-03, 13% genes) suggesting a role for signal transducers.
Finally, the terms enriched for genes predicted between 6-8 hours
are “‘proteasome complex” (p=2.98e-11, 7%) and “peptidase
activity” (p=15.2e-08, 13%) highlighting the activity of the
immunoproteasome during this phase of the innate immune
response. Finally, genes that were identified in the optimal sub-
network but which did not show change in expression during the
sampled time points were enriched for GO terms such “protein
kinase activity” (p = 7.52¢-31, 16%), “cytokine binding” (p = 5.9e-
26, 6%) and “transcription factor activity” (p=1.18e-07, 12%)
(Table 3).

To check the quality of the network paths predicted by the
method, we identified all the possible paths predicted in the
optimal sub-network that matched a directed path of the same
length in a KEGG pathway. Our method was able to predict
directed paths of 3 edges or more in 13 KEGG pathways,
including the Jak-STAT signaling pathway, the Chemokine
signaling pathway, the Toll-like receptor pathway and the MAPK
signaling pathway (Table 4, Table S8). The longest predicted
directed path contained 7 edges and was part of the Jak-STAT
signaling pathway. Thus, the method was able to partially recover
known pathways in the form of short paths connecting genes
expressed at consecutive time points. We also identified all shortest
paths up to 3 edges (i.e. containing 4 nodes at most) between genes
expressed at different stages of the immune response and checked
how well they were represented in the same KEGG pathway. We
found that 84.9% of the predicted paths have at least 2 genes in
the same KEGG pathway, while 11.6% of the paths have all genes
in the same KEGG pathway (Figure S2). Taken together, these
results confirm the reliability of the optimal gene sub-network
identified for activated wild-type DCs.

To demonstrate the utility of our algorithm, we compared the
optimal sub-network identified by our method to that identified
using a non-temporal minimum cost flow optimization method,
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ResponseNet [15]. Using minimum cost flow optimization
through our initial network, ResponseNet identified paths from
the initial response genes to the late effectors without taking the
intermediate regulators into account (T'able S9). Table 5 shows the
results of the comparison between the optimal sub-networks
predicted by our method and ResponseNet. ResponseNet
identified fewer genes and interactions in the predicted sub-
network. More significantly, since there was no constraint for the
flow to pass through the intermediate regulators, it identified only
49 of these as compared to the 154 by the current method. Our
method also identified significantly higher number of known
regulators in the innate immune response in addition to longer
paths in associated pathways. On the other hand, ResponseNet
failed to identify a directed path of 3 or more edges within any
KEGG pathway associated with the innate immune response.
These results clearly demonstrate that including the intermediate
regulators into the problem formulation, as we propose here,
improves the ability of the method to predict candidate genes and
assoclated networks using time-course gene expression profiles.

Identified genes and their associated networks

The gene predicted with the highest flow in the optimal sub-
network was Suppressor of cytokine signaling 3 (Socs3) followed by
Nuclear factor bl (Nfichl). Both genes were significantly
upregulated between 2-4 hours and are well-known regulators
of the innate immune response. Socs3, along with Socsl and
Socs2, is an inhibitor of cytokine signaling pathways. It is a key
regulator of interleukins 6 and 10 (II6 and I110) [24]. In the
identified sub-network, Socs3 1s induced by the primary regulators

of the immune response such as Nfkbl and inhibits a large
number of proteins, specifically interleukin receptors (Figure 2a).

Nfich1



Another class of proteins identified, were the Akt serine-
threonine protein kinases Aktl, Akt2 and Akt3, which are
downstream effectors of the PI3K pathway (Figure 2g). Expression
level change was only observed for Ak¢7 which was down-regulated
at 0.5-1 hours followed by an up-regulation at 3 hours. Other
predicted components include the Dual specificity phosphatases
(DUSP proteins) which were significantly upregulated between
0.5-1 hour, except Dusp6. The Dusp proteins regulate the immune
response by dephosphorylating the Map kinases and repressing the
LPS-induced inflammatory response (Figure 2h). Interestingly, the
network indicated that the Dusp genes were expressed within the
early stages of the innate immune response suggesting that control
of inflammation begins soon after its induction.

Many of the genes identified in the network do not show any
significant change in expression after activation of the DCs, but
are known to be essential for the response. An example is the
protein phosphatase 2a catalytic subunit o (ppp2ca) which has a
high flow in the sub-network. A serine threonine phosphatase
required for the dephosphorylation of the 20S proteasome
subunits, ppp2ca is known to affect the ability of the proteasome
to degrade substrates, along with protein kinase A (PKA) [26].
Ppp2ca has also been recently shown to play an important role in
the regulation of endotoxin tolerance through the regulation of
MyD88 activity [27]. The identified gene sub-network indicated
extensive interactions between ppp2ca and the subunits of the
immunoproteasome, suggesting a role of ppp2ca in the regulation
of the immunoproteasome (Figure 3). The immunoproteasome is
induced by interferons and is central to the regulation of the
immune response and in the prevention of auto-inflammatory
diseases through its ability to degrade toxic protein aggregates
during cytokine-induced oxidative stress [28].

Analysis of MyD88 and TRIF-knockout dendritic cells

We applied the method described above to time-course gene
expression profiles obtained from DCs of MyD88 and TRIF-
knockout mice in the context of the comprehensive molecular
mteraction network. MyD88 and TRIF are essential components
of the innate immune response and trigger distinct pathways that
result in the activation of early and late phase Nfkb, respectively.

Previous studies have shown that Nfkb and Mapk8 (JNK) are
activated in a delayed manner in MyD88-knockout cells.



in the optimal sub-network.

Gene Networks Activated in Innate Immunity

Table 2. GO Molecular Function and Cellular Component terms enriched in genes with significant change in expression identified

Time GO Term % genes PValue Bonferroni
0.5-1 hour DNA binding 21.15 4.25E-07 1.42E-04
Transcription regulator activity 20.38 3.54E-12 1.18E-09
Nuclear lumen 11.53 7.32E-07 1.59E-04
Intracellular organelle lumen 11.53 8.78E-05 1.89E-02
Organelle lumen 11.53 9.20E-05 1.98E-02
Transcription factor activity 10.38 1.44E-04 4.70E-02
Cytosol 7.69 3.70E-05 7.99E-03
Nucleoplasm 7.69 1.18E-04 2.53E-02
Transcription factor binding 7.30 4.72E-07 1.58E-04
Protein dimerization activity 6.92 1.96E-05 6.54E-03
Transcription repressor activity 5.76 4.66E-06 1.56E-03
Transcription cofactor activity 5.00 2.16E-05 7.20E-03
MAP kinase tyrosine/serine/threonine phosphatase activity 1.92 2.42E-05 8.06E-03
MAP kinase phosphatase activity 1.92 2.42E-05 8.06E-03
2-4 hours Nucleotide binding 28.57 3.50E-06 9.33E-04
Ribonucleotide binding 24.67 8.02E-06 2.14E-03
Purine ribonucleotide binding 24.67 8.02E-06 2.14E-03
Purine nucleotide binding 24.67 2.04E-05 5.43E-03
ATP binding 19.48 1.56E-04 4.08E-02
Adenyl ribonucleotide binding 19.48 1.91E-04 4.98E-02
Protein kinase activity 12.98 4.75E-06 1.27E-03
Protein serine/threonine kinase activity 9.74 7.52E-05 1.99E-02
6-8 hours Cytosol 12.93 1.33E-08 2.26E-06
Peptidase activity 12.93 1.64E-07 5.28E-05
Peptidase activity, acting on L-amino acid peptides 11.94 1.11E-06 3.56E-04
Endopeptidase activity 10.94 4.15E-08 1.33E-05
Extracellular space 8.95 1.84E-04 3.07E-02
Cell surface 7.46 2.40E-05 4.05E-03
Proteasome complex 6.96 1.76E-13 2.98E-11
External side of plasma membrane 5.97 4.78E-05 8.04E-03
Cytokine binding 5.47 1.10E-07 3.51E-05
Proteasome core complex 497 7.71E-13 1.30E-10
Threonine-type peptidase activity 4.97 1.23E-12 3.96E-10
Threonine-type endopeptidase activity 4.97 1.23E-12 3.96E-10
Cytokine receptor activity 348 5.29E-05 1.69E-02
MHC class | protein complex 298 1.56E-04 2.61E-02
MHC class | peptide loading complex 1.99 1.46E-04 2.43E-02

doi:10.1371/journal.pcbi.1003323.t002

MyD88-knockout network are the “Circadian rhythm” (p = 6.29e-
5) and “Ubiquitin mediated proteolysis” (p = 3.2e-4) suggesting an
assoclation between these pathways and the MyD88-independent,
TRIF-dependent pathway (Table 6, Tables S12 and S13).

In order to identify the dominant changes in the immune
response over time, we classified the genes from the optimal sub-
networks obtained for the wild-type, MyD88-knockout and TRIF-
knockout DCs into functional classes. Global changes in the
expression patterns of genes identified as part of the optimal sub-
network at each of the 3 stages showed a dominance of
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functionally distinct groups at different times during the immune
response (Figure 4b). In wild-type DCs, transcription factors and
enzyme modulators were predominantly expressed during 0.5—
1 hour after LPS stimulation. On the other hand, kinases and
signaling molecules were abundant between 24 hours after
stimulation. Finally, proteases and defence/immunity proteins
along with receptors showed the greatest changes in expression in
the late phase of the immune response between 6-8 hours. TRIF-
knockout DCs showed similar changes in the expression patterns
of genes. However, these patterns were significantly different in the
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identified in the optimal sub-network.

Gene Networks Activated in Innate Immunity

Table 3. GO Molecular Function and Cellular Component terms enriched in genes with no significant differential expression

GO Term % genes PValue Bonferroni
Protein kinase activity 16.29 1.39E-33 7.52E-31
Cytokine binding 6.48 1.10E-28 5.95E-26
Protein serine/threonine kinase activity 11.21 9.47E-22 5.14E-19
Cytokine receptor activity 4.55 1.15E-21 6.25E-19
Purine ribonucleotide binding 25.74 1.84E-21 9.98E-19
Ribonucleotide binding 25.74 1.84E-21 9.98E-19
Plasma membrane 3275 4.81E-21 1.75E-18
Integrin complex 333 3.00E-20 1.09E-17
Purine nucleotide binding 25.92 3.35E-20 1.82E-17
Receptor complex 4.55 2.06E-17 7.49E-15
Adenyl ribonucleotide binding 20.67 2.92E-16 1.81E-13
ATP binding 20.49 3.12E-16 1.81E-13
Nucleotide binding 26.80 8.16E-16 4.22E-13
Protein tyrosine kinase activity 5.95 1.31E-15 7.23E-13
Purine nucleoside binding 21.19 1.37E-15 7.23E-13
Nucleoside binding 21.19 2.20E-15 1.21E-12
Adenyl nucleotide binding 20.84 4.57E-15 2.47E-12
Plasma membrane part 19.61 3.44E-13 1.25E-10
Transmembrane receptor protein tyrosine kinase activity 3.15 1.03E-11 5.59E-09
Cytosol 9.28 2.44E-11 8.87E-09
Transcription factor activity 11.73 2.17E-10 1.18E-07
MAP kinase activity 1.75 2.22E-10 1.21E-07
Cell surface 5.78 1.84E-08 6.70E-06
Chemokine receptor activity 1.75 4.22E-08 2.29E-05
Growth factor binding 2.80 5.01E-08 2.72E-05
Transcription regulator activity 14.54 5.23E-08 2.84E-05
Chemokine binding 1.75 6.70E-08 3.64E-05
Protein phosphatase type 2A complex 1.40 7.77E-08 2.83E-05
Nucleoplasm 8.41 9.65E-08 3.51E-05
GTPase activity 3.50 2.64E-07 1.43E-04

doi:10.1371/journal.pcbi.1003323.t003

MyD88-knockout DCs. Transcription factors were not as signif-
icantly upregulated in the early phase, but more so in the late
phase, when the expression of proteases and defence/immunity
genes was significantly reduced. Thus, the identified sub-networks
suggest a pattern in the global change in gene expression during
the different stages of the immune response. The similarity of the
patterns of gene expression in the TRIF-knockout DCs and wild-
type DCs further support the dominant role of the MyD88-
dependent pathway in the innate immune response. An analysis of
the functional distribution of the genes predicted in the network,
but not showing significant differential expression on activation,
illustrates their similarity to the intermediate regulators in the wild-
type as well as knockout DCs.

Several important components of the innate immune
response were identified in both knockout sub-networks,
however, with significantly different flows. Nficbl, jak2 and
Socs] were genes with the highest flows (>40) in the TRIF-
knockout network. These genes were also identified in the
MyD88-knockout network, but with flows just above 1. This
disparity in the flows possibly indicates their changing levels of
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expression and significance within the two sub-networks. The
sub-network associated with MyD88-knockout DCs had differ-
ent genes with high flows — At3, Casp8 and Stat2. Interestingly,
the kinase Pik3r5 had similar levels of predicted flow in both
knockout networks. It was upregulated in both instances but
much more so in the MyD88-knockout DCs.

Gitl and Cryl were two of the important candidates identified
only in the MyD88-knockout gene network. Gitl (G-protein
coupled receptor kinase interacting protein 1) acts in the formation
of a scaffold to bring together molecules to form signaling modules
and increase the speed of cell migration. Its role in the innate
immune response is currently not known. However, it was
significantly upregulated in the MyD88-knockout sample and
found to interact with Pxn, Arhgef6 and Arhget7 (Figure 5a).

The other important gene identified, Cryl, is a key component
of the circadian core oscillator complex. The role of Cryl in the
negative regulation of the activation of Nficb and further induction
of proinflammatory cytokines has been recently elucidated [31].
Cryl was significantly upregulated in the MyD88-knockout DCs
between 6-8 hours after stimulation and could potentially be

November 2013 | Volume 9 | Issue 11 | e1003323



Table 4. Directed paths predicted in the optimal sub-
network found in KEGG Pathways.

KEGG Pathway Edges in longest predicted path

Jak-STAT signaling pathway
Chemokine signaling pathway

Cell cycle

Complement and coagulation cascades
MAPK signaling pathway

Axon guidance

Toll-like receptor signaling pathway
Tuberculosis

Focal adhesion

ErbB signaling pathway

Adherens junction

Gap junction

W W W W W w w w w s M N

GnRH signaling pathway

doi:10.1371/journal.pcbi.1003323.t004

regulating the activation of Nfkb signaling. Though Cry! was part
of the gene network associated with the activation of wild-type
DCs, it was not identified in the optimal gene sub-network
associated with TRIF-knockout DCis, suggesting that the upregu-
lation of Cryl and its role might be controlled by the MyD88-
independent, TRIF-dependent pathway (Figure 5b).

The MyD88-knockout associated gene network also contained a
number of genes from the E2 and E3 ubiquitin-conjugating
enzyme families, including several members of the Trim family,
which are known for their role in suppressing the immune
response by increasing the ubiquitination and subsequent degra-
dation of regulatory genes [32]. The selective prediction of these
ligases in the MyD88-knockout response network suggests that
proteolytic degradation might also be predominantly affected by
the TRIF-dependent pathway.

The response network identified for the TRIF-knockout sample
highlights the wild-type MyD88 pathway wherein MyD88 triggers
the activation of Nfkb which in turn induces the inflammatory
cytokines, further inducing the Jaks and Stats and finally
upregulating the Socs genes which repress the inflammatory
response (Figure 5c).

Discussion

We used a method based on minimum cost flow optimization to
identify paths connecting genes expressed during 3 major stages of
the innate immune response within a large molecular interaction
network. This method was able to identify a sub-network active
during the innate immune response, with genes and interactions
associated with flows c